Government Polytechnic, Pune

'180 OB' – Scheme

Course Title: Applied Physics

(Course Code: SC 1103)

Diploma programme in which this course is offered	Semester in which offered
Diploma in CE/ME/MT	II

1. RATIONALE

This course is designed with some fundamental principle, laws and information to help the diploma engineers to apply the basic concepts of physics to solve engineering problems. The study of basic principles and concepts of motion, elasticity, viscosity, surface tension, optics, sound, heat, photo electricity, X-rays and laser will help in understanding the technology courses where emphasis is on the applications of these in different technological applications.

2. COURSE OUTCOMES (COs)

The theory, practical experiences and relevant soft skills associated with this course are to be taught and implemented, so that the student demonstrates the following industry oriented COs associated with the above mentioned competency:

- 1. Estimate errors in the measurement of physical quantities.
- 2. Apply laws of motion in various applications.
- 3. Apply the concepts of elasticity, viscosity and surface tension to solve engineering problems.
- 4. Use the basic principles of heat, light, and optics in related engineering problems.

3. TEACHING AND EXAMINATION SCHEME

Teaching Scheme Total Credits			Examination Scheme					
(In Hour	s)	(L+T+P)	Theory Marks		Practical Marks		Total Marks
L	T	P	C	ESE PA		ESE	PA	
3	00	2	5	80	20	25	25	150

Legends: L-lecture, T-Tutorial/teacher guided theory practice, P-practical, ESE-End semester examination, PA- Progressive Assessment.

4. SUGGESTED PRACTICALS/ EXERCISES

The practicals in this section are PrOs (i.e. sub-components of the COs) to be developed and assessed in the student for the attainment of the competency:

S. No.	Practical Exercises (Learning Outcomes in Psychomotor Domain)	Unit No.	Approx. Hrs. required
1	Identify given instrument and calculate instrumental error, range, and least count of instrument.	1	2
2	Use Vernier calliper to measure dimensions of different objects and calculate volume of given objects.	1	2
3	Use micrometer screw gauge to measure dimensions of given objects and to determine the volume.	1	2
4	Determine acceleration due to gravity by simple pendulum (Concept of SHM).	1	2
5	Determine surface tension by capillary rise method.	2	2
6	Measure coefficient of viscosity of given liquid using Stoke's method (Stokes law).	2	2
7	Calculate spring constant using Hooke's law.	2	2
8	Determine velocity of sound using resonance tube. (Concept of resonance).	3	2
9	Verification of Boyle's law.	4	2
10	Determine refractive index of glass slab using principle of total internal reflection.	5	2
11	Observe characteristics of laser using He-Ne laser beam.	5	2
12	Verify characteristics of photoelectric cell.	6	2
	Total		24

5. SCHEME OF PRACTICAL EVALUATION

S.No.	Performance Indicators	Weightage in %
a.	Arrangement of available equipment / test rig or model	10
b.	Setting and operation	10
c.	Safety measures	10
d.	Observations and Recording	20
e.	Interpretation of result and Conclusion	20
f.	Answer to sample questions	20
g.	Submission of report in time	10
	Total	100

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIREDThe major equipment with broad specification mentioned here will usher in uniformity in conduct of practicals, as well as aid to procure equipment by authorities concerned.

S. No.	Equipment Name with Broad Specifications	Ex. No.
1	Voltmeter (0-10 V), ammeter (0-5 A), Travelling microscope: Range:	1,23,5
	0.05-22, Vernier Calliper: Range: 0-15 cm, Resolution 0.01 cm.	
	Micrometer screw gauge: Range 0-25 mm, Resolution 0.01 mm.	
2	Vernier Calliper: Range: 0-15 cm, Resolution 0.01 cm.	2
3	Micrometer screw gauge: Range 0-25 mm, Resolution 0.01 mm.	3
4	Simple pendulum, Stop Watch.	4
5	Travelling microscope: Range: 0.05-22 cm, Resolution 0.001 cm,	5
	Capillary tube.	
6	Stoke's apparatus, Wooden scale, small metal sphere.	6
7	Hooke's law apparatus	7
8	Resonance tube, tuning fork set, rubber pad.	8
9	Boyles law apparatus.	9
10	Glass Slab 75x50x12mm.	10
11	He-Ne laser kit.	11
12	Photoelectric cell.	12

7. THEORY COMPONENTS

The following topics/subtopics should be taught and assessed in order to develop UOs for achieving the COs to attain the identified competency.

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
	(in cognitive domain)	
Unit 1	1. Describe Various Errors	1.1 Units and Measurements:
General	in measurements.	Introduction, Definition of unit,
Physics	2. Distinguish between	Fundamental and derived units,
	centripetal and centrifugal	Different System of units, Errors in
	force.	measurements
	3. Derive equation of SHM.	1.2 Circular Motion : Definition, Uniform
		circular motion(UCM), radius vector,
		angular displacement, angular velocity,
		angular acceleration and units, relation
		between linear and angular velocity,
		relation between linear acceleration and
		angular acceleration, explanation of
		centripetal and centrifugal force,
		examples, applications of centripetal
		and centrifugal force, analytical
		treatment.
		1.3 SHM: Concept of time period,
		frequency, amplitude, wavelength,
		relation between wave velocity
		frequency and wavelength. Definition
		of SHM, examples of SHM, SHM as a
		projection of UCM, equation of SHM
		starting from mean position.
Unit 2		2.1 Surface Tension :
Properties of	1. Explain phenomenon of	Definition and unit, molecular theory
Matter	ST with the help of	of surface tension, Cohesive and
	Laplace's molecular theory.	adhesive forces, angle of contact and
	2. State Newton's law of	its significance, shape of liquid surface
	viscosity.	in capillary tube, capillary action and
	3. Describe types of stress	examples, surface tension by capillary
	and strain.	rise method (no derivation), analytical
		treatment, effect of impurity and
		temperature on surface tension.
		2.2 Viscosity: Definition, velocity gradient
		and its unit, Newton's law of viscosity,
		terminal velocity, Stokes law, Stokes
		formula, coefficient of viscosity by

Unit	Unit Outcomes (UOs)	Topics and Sub-topics
	(in cognitive domain)	stokes method (no derivation), type of flow of liquid - stream line flow, turbulent flow, Reynolds's number (significance), applications and analytical treatment. 2.3 Elasticity: Elastic, plastic and rigid bodies, stress, strain and its types, Hook's law, types of elastic modulii with its relation, analytical treatment, behavior of wire under continuously increasing load (stress-strain diagram).
II:4 2	1 Distinguish between	
Unit 3 Sound	1. Distinguish between Transverse wave and	3.1 Sound: Wave motion, Transverse and longitudinal waves, free and forced
Sound	Longitudinal wave.	vibrations, Resonance – explanation,
	2. Explain resonance with	example and applications, absorption,
	its applications.	reflection and transmission of sound.
	3. Sate applications of	3.2 Ultrasonic: Definition, properties of
	ultrasonic wave in	ultrasonic waves, applications of
	engineering.	ultrasonic in engineering.
Unit 4	1. State Boyle's law,	4.1 Gas Laws: Explanation of Gas laws,
Heat	Charles's law and Gay	Boyle's law, Charles's law, Gay
	lussac's law.	Lussac's law, General Gas Equation,
	2. Convert given	analytical treatment, units of temperature
	temperature in different	⁰ C, ⁰ K with their conversion, absolute
	scale.	scale of temperature,
	3. Explain different modes	4.2 Heat: modes of heat transfer,
	of heat transfer.	conduction, convection and radiation.
Unit 5	1. Explain phenomenon of	5.1 Light: Introduction to reflection and
Optics And	total internal reflection.	refraction of light, laws of reflection and
LASER	2. Sate different types and	refraction, Snell's law, refractive index,
	applications optical fiber.	physical significance of refractive index,
	3. Describe LASER with its	critical angle, total internal refraction of
	properties and applications.	light.
		5.2 Fiber optics : Propagation of light through optical fiber, structure of optical
		fiber, numerical aperture, acceptance
		angle, acceptance cone, types of optical
		fibers, applications of optical fiber,
		comparison of optical fiber
		communication with electrical cable
		communication, analytical treatment.
		5.3 LASER: Definition, properties of

Unit	Unit Outcomes (UOs) (in cognitive domain)	Topics and Sub-topics					
	(======================================	LASER, spontaneous and stimulated emission, population inversion, metastable state, pumping, life time, He-Ne laser-construction and working with energy level diagram, engineering applications of laser.					
Unit 6	1. Explain photoelectric	6.1 Photo electricity : photoelectric effect,					
Modern	effect with its circuit	Plank's quantum theory, concept of					
Physics	diagram.	photon, properties of photon, threshold					
	2. State properties and	frequency, threshold wavelength,					
	applications of X-rays in	stopping potential, photoelectric work					
	engineering.	function, Einstein's photoelectric					
		equation, photocell (circuit diagram and					
		working), applications of photoelectric					
		cell, analytical treatment.					
		6.2 X- ray: principle, production of X-					
		rays using Coolidge tube, origin of					
		X-rays, types of X-rays, properties					
		of X-rays, engineering applications.					

8. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

Unit	Unit Title	Teaching	Distribution of Theory Marks					
No.		Hours	R	U	A	Total		
			Level	Level	Level	Marks		
01	General Physics	8	4	4	6	14		
02	Properties of matter	12	8	6	4	18		
03	Sound	6	4	4	2	10		
04	Heat	6	4	4	4	12		
05	Optics and Laser	8	6	6	2	14		
06	Modern Physics	8	6	4	2	12		
	Total	48	32	28	20	80		

9. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested student-related *co-curricular* activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages for each activity, also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

a. Prepare journal based on practical performed in Physics laboratory. Journal consists of drawing, observations, required equipment's, date of performance with teacher signature.

10. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a. Massive open online courses (MOOCs) may be used to teach various topics/sub topics.
- b. About 15-20% of the topics/sub-topics which is relatively simpler or descriptive in nature is to be given to the students for self-directed learning and assess the development of the COs through classroom presentations (see implementation guideline for details).
- c. With respect to item No.8, teachers need to ensure to create opportunities and provisions for *co-curricular activities*.
- d. Use proper equivalent analogy to explain different concepts.
- e. Use Flash/Animations to explain various components, operation and
- f. Teacher should ask the students to go through instruction and Technical manuals

11. SUGGESTED MICRO-PROJECTS

(Only for Class Declaration Courses)

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project are group-based. However, in the fifth and sixth semesters, it should be preferably be *individually* undertaken to build up the skill and confidence in every student to become problem solver so that s/he contributes to the projects of the industry. In special situations where groups have to be formed for micro-projects, the number of students in the group should not exceed three.

The micro-project could be industry application based, internet-based, workshop-based, laboratory-based or field-based. Each micro-project should encompass two or more COs which are in fact, an integration of PrOs, UOs and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The total duration of the micro-project should not be less than *16* (*sixteen*) *student engagement hours* during the course. The student ought to submit micro-project by the end of the semester to develop the industry oriented COs.

A suggestive list of micro-projects is given here. Similar micro-projects could be added by the concerned faculty:

a. . Nil

12. SUGGESTED LEARNING RESOURCES

S. No.	Title of Book	Author	Publication
1	Physics Textbook	J.V.Narlikar,	National Council of Education
	Part I- Class XI	A.W.Joshi, et al.	Research and Training, New
			Delhi,2010, ISBN:8174505083
2	Physics Textbook	J.V.Narlikar,	National Council of Education
	Part II- Class XI	A.W.Joshi, et al.	Research and Training, New
			Delhi,2015, ISBN:8174505660
3	Physics Textbook	J.V.Narlikar,	National Council of Education
	Part I- Class XII	A.W.Joshi, et al.	Research and Training, New
			Delhi,2013, ISBN:8174506314
4	Physics Textbook	J.V.Narlikar,	National Council of Education
	Part II- Class XII	A.W.Joshi, et al.	Research and Training, New
			Delhi,2013, ISBN:8174506713
5	Fundamentals of	David Halliday,	7 th Edition
	Physics	Robert Resnick and	John Wily (2004)
		Jearl Walker	
6	Engineering Physics	R.K. Gaur and	Dhanpat Rai Publications
		S. L. Gupta	ISBN 9788189928223
7	Applied Physics	Prakash Manikpure	S. Chand Publishing
			ISBN 9788121919548
8	Applied Physics	Arthur Beiser	Schaum's Outline Series
			McGraw-HILL
9	Engineering Physics	Avadhanulu,	S Chand
		Kshirsagar	ISBN 9788121908177

13. SOFTWARE/LEARNING WEBSITES

- 1) https://en.wikipedia.org/wiki/Engineering_physics
- 2) https://www.laser.com.ve
- 3) www.nanowerk.com
- 4) <u>www.brainscape.com</u>
- 5) https://www.open2study.com/courses/basic-physics
- 6) <u>http://nptel.ac.in/course.php?disciplineId=115</u>
- 7) http://nptel.ac.in/course.php?disciplineId=104
- 8) http://hperphysics.phy-astr.gsu.edu/hbase/hph.html
- 9) www.physicsclassroom.com
- 10) <u>www.physics.org</u>

14. PO - COMPETENCY- CO MAPPING

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	-	-	1	-	1	1
CO2	3	-	-	1	-	-	1
CO3	3	1	2	1	1	-	1
CO4	3	1	1	1	1	-	1
Average	3	0.5	0.75	1	0.5	0.25	1

15.CO-PSO MATRICES OF COURSE

Branch	N	1E	CE			MT			
CO	PSO1	PSO2	PSO1	PSO2	PSO3	PSO1	PSO2	PSO3	PSO4
1	-	-	1	-	-	1	-	-	-
2	-	1	-	-	-	-	-	-	-
3	-	2	-	2	1	1	1	1	-
4	-	1	-	-	-		1	1	-
Average	-	1	0.25	0.5	0.25	0.5	0.5	0.5	-

*Correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) "-": No correlation

16. PREPARED BY:

Name and Signature of Course Expert	Name and Signature of Head of Department
1. Y. D. Bhide	Y. D. Bhide
2. N. S. Biradar	
3. Dr. R. B. Birajadar	
4. D. V. Saurkar	
Signature of Programme Head	Signature of CDC In-Charge
Name of Programme Head	Name of CDC In-Charge